научная статья по теме КЛЕТОЧНЫЕ ОСНОВЫ МУКОЗАЛЬНОГО ИММУНИТЕТА Биология

Текст научной статьи на тему «КЛЕТОЧНЫЕ ОСНОВЫ МУКОЗАЛЬНОГО ИММУНИТЕТА»

РОССИЙСКИЙ ИММУНОЛОГИЧЕСКИЙ ЖУРНАЛ, 2008, том 2(11), № 1, с. 3-19

^=ОБЗОР

КЛЕТОЧНЫЕ ОСНОВЫ МУКОЗАЛЬНОГО ИММУНИТЕТА

© 2008 г. А.А. Ярилин

Институт иммунологии ФМБА, Москва, Россия Поступил: 04.12.07 г. Принят: 18.12.07 г.

Рассмотрены структура и общие закономерности функционирования мукозального отдела иммунной системы. Представлены данные об отделах иммунной системы, ассоциированной со слизистыми оболочками (МАЛТ), особенностях эпителиальных и лимфоидных клеток, структуре лимфоидной ткани слизистых оболочек. Прослежены основные этапы развития иммунного ответа в слизистых оболочках, включающего транспортировку дендритными клетками антигена в лимфатические узлы, реализацию центрального звена иммунного ответа и последующую миграцию эффекторных клеток в слизистые, обусловленную экспрессией необходимых для этого молекул адгезии и рецепторов для хемокинов, продуцируемых в слизистых оболочках. Охарактеризованы особенности эффекторной фазы мукозального иммунитета — преобладание цитотоксического и ^2-зависимого гуморального иммунного ответа с преобладающим синтезом IgA-антител, секретируемых в просвет трактов. Рассмотрены особенности вторичного ответа в слизистых оболочках, обусловленного высоким содержанием клеток памяти, активируемых местными антигенпрезентирующими клетками. Изложено представление о слизистых оболочках как основном месте «ознакомления» организма с чужеродными антигенами, в котором делается выбор между развитием иммунного ответа или анергии к этим антигенам и формируется фонд клеток памяти к антигенам окружения.

Ключевые слова: мукозальный иммунитет, Пейеровы бляшки, М-клетки

ВВЕДЕНИЕ

Слизистые оболочки являются основной зоной контакта организма с антигенами окружения. Вопреки традиционным представлениям оказалось, что чужеродные субстанции попадают в организм не только вследствие нарушения барьеров, но и в результате активного транспорта, осуществляемого специализированными клетками слизистых оболочек. Это придает новый смысл давнему убеждению, что слизистые оболочки представляют собой отнюдь не пассивный барьер и что они в полной мере должны рассматриваться как активная часть иммунной системы. Учение об иммунитете слизистых оболочек еще находится в процессе формирования, но уже сейчас «мукозальная иммунология» требует пересмотра традиционных представлений о структуре и функционировании иммунной системы, основанных на изучении «классических» лимфоидных органов, таких, как лимфатические узлы и селезенка. Этот процесс «встраивания» знаний о мукозальном иммунитете в иммунологию ин-

следние годы, о чем свидетельствуют многочисленные обзоры [1 — 10], в том числе на русском языке [11 — 14].

1. СТРОЕНИЕ И КЛЕТОЧНЫЙ СОСТАВ МУКОЗАЛЬНОГО ОТДЕЛА ИММУННОЙ СИСТЕМЫ

К мукозальному отделу иммунной системы относят иммунологически значимые структуры, которые включают эпителиальный слой слизистых оболочек и субэпителиальное пространство — собственную пластину (lamina propria), содержащие свободные лимфоциты и структурированную лимфоидную ткань нескольких разновидностей, а также лимфатические узлы, дренирующие эти тканевые сегменты. Перечисленные структуры образуют морфофункциональную единицу муко-зального отдела иммунной системы (рис. 1). Комплекс таких участков барьерных тканей, обязательно содержащих структурированные лимфоидные образования, объединяет понятие «лимфоидная ткань, ассоциированная со слизистыми» — МАЛТ (MALT — от mucosa-associated lymphoid tissue). МАЛТ имеет представительство в кишечнике (GALT — gut-associated lymphoid tissue), носоглотке (NALT — nasopharynx-associated lymphoid

тенсивно и успешно осуществляется в по-

Адрес: 115478 Москва, Каширское шоссе, 24, к. 2, Институт иммунологии. E-mail: ayarilin l@yahoo.com

Эпителий

L. propria

Региональные лимфоузлы

Рис. 1. Структура локального сегмента иммунной системы слизистых оболочек

tissue), бронхах (BALT — bronchus-associated lymphoid tissue), а также в конъюнктиве, евстахиевых и фаллопиевых трубах, протоках экзокринных желез — слюнных, слезных и т.д. [8], но отсутствует в урогенитальном тракте. Отделы МАЛТ, рассеянные в слизистых оболочках, взаимосвязаны благодаря единому происхождению иммуноцитов и рециркуляции лимфоидных клеток, что позволяет говорить о единой системе мукозального иммунитета (CMIS — Common mucosal immune system [15]). Помимо мукозального, в барьерных тканях выделяют несколько других ком-партментов — внутрисосудистый, интерсти-циальный, внутрипросветный, которые мы не будем рассматривать в данном обзоре.

1.1. Лимфоидные структуры слизистых оболочек

Известно несколько разновидностей лимфоидных структур слизистых оболочек — пейеровы бляшки и их аналоги в толстой кишке, миндалины, изолированные фолликулы, криптобляшки (criptopatches), аппендикс. Основой строения всех этих образований служит лимфоидный фолликул, окруженный Т-зоной, развитой в большей или меньшей степени. Со стороны просвета эти структуры выстланы фолликулярным эпителием. Отличие фолликулярного эпителия от окружающего цилиндрического эпителия состоит в отсутствии щеточной каймы и бокаловидных клеток, вырабатывающих слизь [16]. Эпителиальные клетки слизистых оболочек даже в покоящемся состоянии выделяют бактерицидные пептиды (дефензины, кателицитины) и цитокины (например, трансформирующий фактор роста в — TGFP). Кроме того, они экс-

прессируют TL-рецепторы (TLR2, TLR3, TLR4), распознающие молекулярные структуры (паттерны), связанные с патогенами — РАМР. На их поверхности присутствуют рецепторы для ряда воспалительных цитокинов (IL-1, TNFa, интерферонов), молекулы МНС, молекулы адгезии (CD58, CD44, ICAM-1). Это обеспечивает возможность вовлечения эпи-телиоцитов в воспаление и иммунные процессы под влиянием патогенов.

Наиболее специфичным компонентом фолликулярного эпителия являются М-клетки (от англ. microfold) [17]. Микроскладки, давшие название этим клеткам, заменяют им микроворсинки. М-клетки лишены слоя слизи, покрывающего другие эпителиальные клетки слизистых оболочек. Маркером М-клеток является рецептор типа I лектина улитки европейской (Ulex europeus) — UEAR1. Эти клетки покрывают значительную часть поверхности лимфоидных структур МАЛТ (около 10% поверхности пейеровых бляшек). Они имеют форму колокола, вогнутая часть которого обращена в сторону лимфоидных фолликулов (рис. 2). К М-клеткам непосредственно примыкает купол (dome — собор) лимфоидных структур — пространство, в котором находятся Т- и В-лимфоциты — преимущественно клетки памяти [18]. Несколько глубже наряду с этими клетками присутствуют макрофаги и CD1^+ дендритные клетки трех разновидностей - CD11p + CD8-, CD11p-CD8+ и CD11P-CD8- [19]. Основная особенность М-клеток состоит в способности активно транспортировать из просвета трактов в лим-фоидные структуры антигенный материал, включая микробные тела. Механизм транспорта пока неясен, но он не имеет отношения к МНС-зависимому процессингу антигенов антигенпрезентирующими клетками (хотя М-клетки экспрессируют молекулы МНС II класса [20]).

АГ

Среди перечисленных выше разновидностей лимфоидных образований МАЛТ пейе-ровы бляшки являются наиболее развитыми, приближающимися по степени комплексности, а также по строению и клеточному составу к лимфатическим узлам. У мышей они локализуются в тонком кишечнике (у мыши — 8—12 бляшек). Их основу составляет 5 — 7 фолликулов, содержащих зародышевые центры, которые отсутствуют только у стерильных животных [21]. Т-зона, окружающая фолликулы, занимает меньшее пространство; соотношение Т/В в пейеровых бляшках составляет 0,2. В Т-зонах преобладают CD4+ Т-лимфоциты (соотношение CD4+/CD8+ равно 5) [8]. В местах соприкосновения фолликулов и Т-зон имеются участки, занятые клетками обоих типов. Бляшки толстой кишки у мышей имеют сходное строение, но мельче, чем пейеровы бляшки и содержатся в меньшем количестве. У человека, наоборот, пейеровы бляшки в большем количестве содержатся в толстой, чем в тонкой кишке. Оба типа бляшек у человека развиваются на 14 неделе эмбрионального развития (у мышей — постнатально); их размер и клеточность возрастают после рождения [7]. Развитие пейеровых бляшек (как и лимфатических узлов) определяется миграцией особых клеток — LTIC (Lymphoid tissue inducer cells), которые имеют фенотип CD4+CD45+CD8-CD3-, экспрессируют мембранный лимфотоксин ЦТа1Р2 и рецептор для IL-7 [22]. Взаимодействие ЬТа1Р2 с LTP-ре-цептором стромальных клеток индуцирует способность последних секретировать хемо-кины, привлекающие Т- и В-клетки (CCL19, CCL21, CXCL13), а также IL-7, обеспечивающий их выживание.

Изолированные фолликулы [23] близки по своему строению фолликулам других органов — лимфатических узлов, селезенки и пейеровых бляшек. В тонкой кишке мыши содержится 150 — 300 изолированных фолликулов; их размер в 15 раз меньше, чем пейеро-вых бляшек. В одной структуре этого типа может содержаться 1 — 2 фолликула. Т-зоны в них развиты слабо. Как и в фолликулах пейеровых бляшек в них всегда содержатся зародышевые центры (в отличие от фолликулов лимфатических узлов, в которых зародышевые центры появляются при условии вовлечения узла в иммунный ответ). В составе изолированных фолликулов преобладают В-клетки (70%), на долю Т-клеток приходится 10—13% (с отношением CD4+/CD8+, равным 3). Более 10% клеток составляют лимфоидные предше-

ственники (c-kit+IL-7R+), около 10% - CD11c+ дендритные клетки [7]. Изолированные фолликулы отсутствуют у новорожденных и индуцируются в постнатальном периоде при участии микрофлоры [23].

Криптобляшки (criptopatches) — скопления лимфоидных клеток в lamina propria между криптами, описанные у мышей в 1996 г. [24]; у человека они не обнаружены. В тонком кишечнике их содержание выше (около 1500), чем в толстом. В каждой криптобляшке содержится до 1000 клеток. На периферии бляшки находятся дендритные клетки (20 — 30% от общего числа клеток), в центре — лимфоциты. Среди них лишь 2% приходится на зрелые Т- и В-клетки. Остальные лимфоидные клетки имеют фенотип юных клеток Т-ряда CD3-TCR—CD44 + c-kit+IL-7R+ [6]. Предполагалось, что это — предшественники Т-лимфоци-тов, которые дифференцируются

Для дальнейшего прочтения статьи необходимо приобрести полный текст. Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут. Стоимость одной статьи — 150 рублей.

Показать целиком