научная статья по теме НАСЕКОМЫЕ И БИОНИКА: ЗАГАДКИ ЗРИТЕЛЬНОГО АППАРАТА Физика

Текст научной статьи на тему «НАСЕКОМЫЕ И БИОНИКА: ЗАГАДКИ ЗРИТЕЛЬНОГО АППАРАТА»

Насекомые и бионика:

загадки зрительного аппарата

А.В.Сергеев, А.С.Благодатский

С момента возникновения жизни на Земле эволюция была главной движущей силой совершенствования живых организмов. С появлением человека началось технологическое развитие. Оно позволяет людям конструировать потрясающие вещи, аналогов которым в природе просто не существует. Значит ли это, что человек превзошел природу? Пожалуй, нет. За миллиарды лет эволюция испробовала невообразимое количество механизмов и способов взаимодействия между живыми существами и окружающей средой. И очень часто эти решения настолько уникальны, что встает правомерный вопрос: смог бы до этого додуматься человек? Направление в науке, которое заимствует биологические принципы для применения в технике, называется бионикой (или био-миметикой). Самолет летает по такому же принципу, что и птицы, а вот вертолет — уже более «человеческое» изобретение. Если внимательно всмотреться, можно найти немало интересных решений природы, даже, например, в зрительном аппарате насекомых.

Фасеточный глаз и омматидии

Большая часть современных оптических приборов, таких как фотоаппараты и видеокамеры,

© Сергеев А.В., Благодатский А.С., 2015

Антон Владимирович Сергеев, аспирант, младший научный сотрудник Института математических проблем биологии РАН. Область научных интересов — математическое моделирование, микроскопия и обработка изображений, ДНК-нанотехнологии. Лауреат конкурса «Био/мол/текст» 2013 г.*

Артем Сергеевич Благодатский, кандидат биологических наук, сотрудник Института белка РАН. Занимается молекулярной и клеточной биологией, иммунологией, энтомологией.

сделаны по подобию человеческого глаза: свет, попадающий на собирающую линзу, фокусируется на поверхности светочувствительной матрицы, которая состоит из миллионов рецепторов. Чем больше фоторецепторов, тем большим разрешением обладает оптическая система. Интересная особенность такого зрительного аппарата в том, что изображение на матрице (сетчатке в случае человеческого глаза) первоначально перевернуто из-за собирающей линзы (хрусталика) и только после обработки (в мозге) становится таким, каким должно быть.

* Со статьей «Может ли муха стать нанотехнологом?», победившей на научно-популярном конкурсе «Био/мол/текст»-2013 в номинации «Своя работа», можно ознакомиться на сайте «Биомолекула» (http://biomolecula.ru/content/1380), посвященном молекулярным основам современной биологии и практическим применениям научных достижений в медицине и биотехнологии. По договоренности с организаторами конкурса мы публикуем переработанный вариант этой статьи. — Примеч. ред.

Членистоногие (насекомые, ракообразные, паукообразные и многоножки) обладают большим разнообразием фоторецепторных механизмов [1]. Самое главное отличие состоит в том, что у них весьма распространены фасеточные (сложные) глаза, состоящие из большого количества омма-тидиев (простых глазков). Омматидий в первом приближении выглядит как конус, у которого основание представляет собой шестиугольную фасетку (роговичную линзу) на поверхности глаза, а вершина заканчивается нервными отростками в глубине головы (рис.1). Размеры фасетки обычно лежат в пределах от 5 до 50 мкм.

Фасеточные глаза подразделяют на два типа — аппозиционный и суперпозиционный. Пигментные клетки аппозиционного глаза расположены таким образом, чтобы на фоторецепторную часть каждого омматидия не попадал свет от соседних. Простой глаз в такой системе представляет собой длинную узкую трубу с толстыми непроницаемыми стенками и cветочувствительными рецепторами на дне, в результате изображения от разных омматидиев не перекрываются. Такая конструкция хорошо работает при высокой освещенности, поэтому ею обладает большая часть дневных насекомых. В суперпозиционном глазе изображения, поступающие от соседних омматидиев, могут суммироваться, что позволяет видеть при меньшей освещенности благодаря увеличению доли проходящего света. Если объединение изображений происходит за счет того, что в ночное время пигмент в клетках перераспределяется, делая стенки прозрачными (при этом из-за выигрыша в светосиле уменьшается разрешение), такой подтип строения глаза называется оптикосуперпози-ционным. Такие глаза имеются преимущественно у ночных видов, например мотыльков. Если же изображение от соседних омматидиев поступает из-за небольшого перекрывания их видимой области, а дальнейшая обработка суммарного изображения ложится на нервную систему, то это ней-росуперпозиционный тип строения глаза. Такой механизм позволяет, например, мухам хорошо ориентироваться и днем, и в сумерках.

Каковы же основные преимущества и недостатки сложного глаза насекомых по сравнению с человеческим? С одной стороны, разрешение оптической системы насекомых определяется не числом фоторецепторов, а количеством самих омматидиев, так как сигнал каждого преобразуется в отдельный «пиксель». Поэтому человеческий глаз явно лучше — миллионы рецепторных клеток против тысяч простых глазков. С другой стороны, несомненное преимущество фасеточных глаз — их большой угол обзора (почти 360° у отдельных видов), за исключением мертвой точки прямо позади тела (что легко исправляется с помощью глазных стебельков). Кстати, некоторые виды обладают не только парой фасеточных глаз, но и отдельно стоящими простыми глазками, направлен-

Рис.1. Схема строения фасеточного глаза: роговичные фасетки (1), светопреломляющий аппарат (2), пигментные (3) и зрительные (4) клетки, светочувствительный элемент омматидия (5), аксоны зрительных клеток, идущие в оптические ганглии (6), покровы головы (7), глазная капсула (8).

ными в разные стороны. Такие глаза не способны различать объекты (разрешение составляет всего один «пиксель»), но могут реагировать на смену освещенности. Их обычно бывает три или больше, а располагаются они на голове или на спине. Из всего многообразия мира членистоногих отдельно стоящие простые глазки присутствуют у некоторых жуков, муравьев, ос и стрекоз, а пауки вообще не могут без них обходиться. Естественно, существуют и исключения — например, незрячие насекомые, живущие под землей. Некоторые возможности зрительного аппарата членистоногих поражают воображение. За счет особой конструкции фоторецепторной части многие пчелы могут различать свет с разной поляризацией, что помогает им ориентироваться по солнцу даже в пасмурную погоду. Отдельные виды стрекоз не ограничивают себя только одним типом сложного глаза, поэтому у них верхняя его половина может быть аппозиционной, а нижняя — суперпозиционной. У большинства животных не больше четырех рецепторов (три вида колбочек и один вид палочек), в то время как количество цветовых рецепторов у раков-богомолов достигает 12 (должно быть, у них очень яркая жизнь). С точки зрения функциональных особенностей глаза (а не его внешнего вида) выявляется следующая закономерность: фасеточный глаз приспо-

Рис.2. Фасетчатый глаз и его бионический аналог [2]. Вверху — сложные глаза вымершего трилобита Erbeno-chile erbeni (слева; doi:10.1126/science.1088713) и плодовой мушки Drosophila melanogaster (doi:10.1126/ science.1182228). Внизу изображен прибор CurvACE (Curved Artificial Compound Eye), кандидат на самый маленький искусственный сложный глаз (объем 2.2 см3, масса 1.75 г и потребляемая мощность менее 0.9 Вт), и его схематичное изображение рядом с аналогичным по угловому разрешению фасетчатым глазом.

Рис.3. Устройство сложного глаза насекомого. Последовательно изображены голова осы, глаз насекомого, роговичные линзы омматидиев (фасетки) и нанобу-горки на их поверхности.

соблен прежде всего для детектирования движущихся объектов, в то время как человеческий — для распознавания образов. Так, насекомое с трудом может узнать человека в лицо, а просмотр кинофильма покажется ему скучным занятием, потому что сложный глаз может улавливать колебания с частотой до 300 Гц (против приблизительно 50 Гц у человека) и фильм будет просто очень медленной сменой картинок. Эта особенность очень важна для летающих насекомых, так как позволяет лучше ориентироваться в пространстве на больших скоростях (и вовремя избегать удара мухобойкой).

Итак, фасеточный глаз имеет определенные преимущества, и исследователи пытаются поставить их на службу современным технологиям, изобретая разнообразные датчики (рис.2). Практически все вышеперечисленное обнаружили с помощью светового микроскопа на микроуровне. Но не менее интересные открытия ждали ученых на более мелких масштабах.

Нанобугорки

В 60-х годах прошлого века ученые решили рассмотреть поверхность сложного глаза бабочек под электронным микроскопом. Неожиданностью стало то, что поверхность фасетки у некоторых видов могла быть покрыта большим количеством плотно посаженных нанобугор-ков (рис.3). В ходе детального анализа выявили физические особенности такого покрытия, а методом атомно-силовой микроскопии уточнили размеры наноструктур — 200—400 нм в ширину и 10—250 нм в высоту [3, 4]. Оказалось, что наноструктури-рованная поверхность фасетки обладает антиотражательной функцией — похожий прием человек использует для создания просветляющего оптического покрытия у фотоаппаратов. Наноструктуры фасеток, с одной стороны, снижают заметность насекомого благодаря уменьшению блеска глаз, а с другой стороны, позволяют ему лучше видеть за счет увеличения доли проходящего света. Эти исследования проводились на насекомых, пойманных в живой природе. Следующим шагом стало изучение модельного организма — плодовой мушки Droso-phtta melanogaster.

В нашем коллективе Пущин-ского научного центра РАН ре-

И

о

1 Л

• * л t

» Ш А А • щ

* • # i %

Рис.4. Наноструктура глаз дикого и мутантных типов Drosophila melanogaster [5]. Сложный глаз дикого типа дрозофилы (а) характеризуется строгой гексагональной упаковкой омматидиев, в то время как у мутанта Frizzled (б) наблюдается фенотип «рыхлый глаз» с нарушенным расположением простых глазков. Это подтверждается при анализе дифракционной картины и фурье-преобразования изображений глаз дикого типа (в), где наличие шестиугольника говорит о гексагональной упаковке, и

Для дальнейшего прочтения статьи необходимо приобрести полный текст. Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут. Стоимость одной статьи — 150 рублей.

Показать целиком