научная статья по теме SYNTHESIS, CRYSTAL STRUCTURE, AND THERMAL PROPERTIES OF THREE NOVEL COMPLEXES BASED ON 2,3-PDC Химия

Текст научной статьи на тему «SYNTHESIS, CRYSTAL STRUCTURE, AND THERMAL PROPERTIES OF THREE NOVEL COMPLEXES BASED ON 2,3-PDC»

КООРДИНАЦИОННАЯ ХИМИЯ, 2015, том 41, № 5, с. 292-300

УДК 541.49

SYNTHESIS, CRYSTAL STRUCTURE, AND THERMAL PROPERTIES OF THREE NOVEL COMPLEXES BASED ON 2,3-Pdc

© 2015 Y. F. Huang1, Z. W. Shi1, *, Y. Liu2, H. Xiao1, and X. H. Yin1

1College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006 P.R. China 2School of Public Health, Ningxia Medical University, Ningxia, 750004 P.R. China *E-mail: 1309263493@qq.com Received August 28, 2014

Three new metal-organic complexes, [Cd4(2,3-Pdc)4 • 4H2O] (I), [Fe4(2,3-Pdc)4 • 12H2O] (II), [Ba8(2,3-Pdc)4 • 12H2O] (III) (2,3-Pdc = 2,3-pyridinedicarboxylic acid), have been synthesized and characteristic by IR spectrum, elemental analysis, single-crystal X-ray diffraction, thermogravimetric analysis. X-ray structure analysis shows that complex I is 3D structure, complex II and complex III are 1D chain structures (CIF files CCDC nos. 1002757 (I), 1002888 (II) and 1002980 (III)). 2,3-Pdc has many kinds of coordination mode, so it can form many different of coordination polymers. Complexes can be packed by the weak C—H---O, N—H---O and п—п interactions.

DOI: 10.7868/S0132344X15050035

INTRODUCTION

Crystal engineering of metal complexes, especially coordination polymers have been greatly developing for the past decades [1—10], because of their various structure and potential applications as electronic, magnetic, optical, absorbent and catalytic materials [11—16]. As bridging ligand, carboxylate ligand, particularly pyridine carboxylic acid, forms complicated coordination polymers much easier. So it is necessary to study the syntheses and crystal structure of the complexes formed by pyridine systematically to understand the factors that influence the formation and structures of such complexes. We will study that may lead to functional materials and also provide theoretical foundations for su-pramolecular chemistry and crystal engineering [17]. The role of hydrogen bonding in metal-coordinated network structures result in a large number of coordination polymers.

2,3-Pyridinedicarboxylic acid (2,3-Pdc) is a representative bridging ligand and carboxylate ligand. It has nitrogen atom and oxygen atom, so 2,3-Pdc can have many kinds of coordination mode. In this paper, we report synthesis the three novel complexes, [Cd4(2,3-Pdc)4• 4H2O] (I), [Fe4(2,3-Pdc)4 • 12H2O] (II), [Ba8(2,3-Pdc)4 • 12H2O] (III).

EXPERIMENTAL

Materials and methods. All reagents and solvents were used as supplied commercially. Elemental analysis (C, H, and N) were carried out in a PerkinElmer model 240 automatic instrument. Infrared (IR) spectrum on KBr pellets were performed on a BRUKER EQUINOX-5 5 spectrometer from 4000-400 cm-1.

The X-ray powder diffraction (XRPD) was recorded on a XD-3 diffractometer (Beijing, China) at 36 kV, 25 mA for a Cu-target tube, and a graphite monochromator. Simulation of the XRPD spectra was carried out by the single-crystal data and diffraction-crystal module of the Mercury (Hg) program available free of charge via the Internet at http://www.iucr.org.

Synthesis of complex I. 2,3-Pdc (0.0850 g, 0.5 mmol), nicotinic acid (0.0346 g, 0.5 mmol) and CdCl2 • 2H2O (0.0856 g, 0.5 mmol) were added to a mixture of 3 mL DMF (DMF = N,N-Dimethylformamide), 4 mL ethanol, 8 mL H2O. The resulting mixture was stirred at room temperature until it was homogeneous, and then sealed in a 20 mL Teflon-lined stainless reactor, kept under autogenous pressure in 130°C for 72 h, and then slowly cooled to room temperature at a rate of 5°C/h. Then white crystals suitable for X-ray diffraction were separated and washed with water, which were stable in air and insoluble in water and common white solvents. The yield was 70% based on Cd.

For C28H2cN4O2cCd4

anal. calcd., %: C, 28.45; H, 1.71; N, 4.74. Found, %: C, 28.38; H, 1.67; N, 4.75.

IR data (KBr; v, cm-1): 3748 m, 3672 m, 3648 m, 3522 m, 1666 m, 1628 s, 1544 v.s, 1458 s, 1400 s, 1378 s, 1269 s, 1233 s, 1102 v.s, 871 s, 841 s, 776 s, 702 s, 542 m, 452 s.

Synthesis of complex II. 2,3-Pdc (0.0850 g, 0.5 mmol), FeCl2 • 4H2O (0.1268 g, 1 mmol) were added to a mixture of 3 mL DMF, 5 mL methanol, 8 mL H2O. The resulting mixture was stirred at room temperature until it was homogeneous, and then sealed in a 20 mL Teflon-lined stainless reactor, kept

Table 1. Crystallographic data and structural refinement details of complexes I—III

Parameter Value

I II III

Formula weight 1182.08 895.05 2634.74

Crystal system Monoclinic Orthorhombic Monoclinic

Space group P21/C Pea 2j P2\/c

a, A 6.5512(14) 16.229(3) 6.9035(7)

b, A 11.0537(2) 6.8269(11) 26.6101(7)

c, A 10.7444(2) 8.5735(14) 9.0230(6)

a, deg 90 90 90

P, deg 97.655(2) 90 90.295(5)

Y, deg 90 90 90

Volume A3 771.1(3) 949.9(3) 1657.5(2)

Z 4 4 4

Pcalo g cm-3 2.546 1.923 2.640

Absorption coefficient, mm-1 2.825 1.610 4.794

/(000) 568 560 1239

Crystal size, mm 0.25 x 0.14 x 0.15 0.28 x 0.20 x 0.19 0.29 x 0.22 x 0.17

9 Range for data collection, deg 2.66-26.99 2.51-25.45 1.53-27.00

Reflections collected/independent 4775/1675 5055/1757 10133/3593

Rint 0.0357 0.0359 0.0949

Reflections (I > 2a(I)) 1234 1640 2729

Completeness to 9 = 28.47°, % 99.7 100 99.5

Max and min transmission 0.8832 and 0.8355 0.8081and 0.7104 0.8382 and 0.8196

Data/restraints/parameters 1675/0/127 1757/1/145 3593/636/271

Goodness-of-fit on F2 1.046 1.065 1.089

R indices (I > 2ct(T)) R1 = 0.0323 R1 = 0.0393 R1 = 0.0849

wR2 = 0.0789 wR2= 0.1013 wR2 = 0.2325

R indices (all data) R1 = 0.0378 R j = 0.0427 R1 = 0.0985

wR2 = 0.0802 wR2 = 0.1040 wR2 = 0.2391

Largest difference peak and hole, e A-3 0.902 and -1.641 0.301 and -0.334 0.609 and -1.343

Table 2. Selected bond distances (À) and angles (deg) for structures I—III*

Bond d, À Bond d, Â

Cd(1)-O(3)#1 Cd(1)-O(2) Cd(1)-O(4)#3 Fe(1)-O(1) Fe(1)-O(5) Fe(1)-N(1) 2.246(3) 2.309(3) 2.323(3) I 2.074(3) 2.120(4) 2.192(4) Cd(1)-O(5)#2 Cd(1)-N(1) Cd(1)-O(1) I Fe(1)-O(7) Fe(1)-O(3)#! Fe(1)-O(6) 2.260(3) 2.320(4) 2.371(3) 2.120(3) 2.131(3) 2.206(3)

Angle ro, deg Angle ro, deg

III

Ba(1)-O(6) 2.713(9) Ba(1)-O(7)#1 2.727(10)

Ba(1)-O(3)#2 2.744(10) Ba(1)-O(4)#3 2.786(10)

Ba(1)-O(12) 2.82(2) Ba(1)-O(8) 2.852(10)

Ba(1)-O(2) 2.890(10) Ba(1)-N(1)#3 2.914(11)

Ba(1)-O(1) 3.071(10) Ba(1)-O(4)#2 3.112(10)

Ba(1)-O(5)#4 3.216(10) Ba(2)-O(3)#5 2.700(10)

Ba(2)-O(2)#3 2.744(10) Ba(2)-O(6)#2 2.762(10)

Ba(2)-O(5) 2.769(9) Ba(2)-O(11) 2.828(14)

Ba(2)-O(1)#5 2.864(10) Ba(2)-O(7)#3 2.873(9)

Ba(2)-N(2) 2.915(11) Ba(2)-O(8)#3 3.005(10)

Ba(2)-O(5)#2 3.107(10) Ba(2)-O(4)#6 3.199(10)

Angle ro, deg Angle ro, deg

O(3)#1Cd(1)O(5)#2

O(5)#2Cd(1)O(2)

O(5)#2Cd(1)N(1)

O(3)#1Cd(1)O(4)#3

O(2)Cd(1)O(4)#3

O(3)#1Cd(1)O(1)

O(2)Cd(1)O(1)

O(4)#3Cd(1)O(1)

O(1)Fe(1)O(7)

O(7)Fe(1)O(5)

O(7)Fe(1)O(3)#1

O(1)Fe(1)N(1)

O(5)Fe(1)N(1)

O(1)Fe(1)O(6)

O(5)Fe(1)O(6)

N(1)Fe(1)O(6)

I

91.64(11) 97.07(11) 105.27(12) 88.92(12) 82.83(12) 80.88(11) 100.26(11) 79.46(11)

92.90(13) 83.80(14) 85.92(14) 76.98(13) 87.74(14) 172.73(13) 83.45(13) 95.89(13)

O(3)#1Cd(1)O(2) O(3)#xCd(1)N(1) O(2)Cd(1)N(1) O(5)#2Cd(1)O(4)#3 N(1)Cd(1)O(4)#3 O(5)#2Cd(1)O(1) N(1)Cd(1)O(1)

II

O(1)Fe(1)O(5)

O(1)Fe(1)O(3)#!

O(5)Fe(1)O(3)#!

O(7)Fe(1)N(1)

O(3)#xFe(1)N(1)

O(7)Fe(1)O(6)

O(3)#xFe(1)O(6)

III

171.29(10) 105.18(11) 72.22(10) 163.47(11) 90.49(11) 84.32(11) 168.26(12)

94.68(14) 100.30(14) 162.23(13) 166.26(14) 104.85(14) 93.88(13) 82.82(12)

O(6)Ba(1)O(7)#1 140.2(3) O(6)Ba(1)O(3)#2 103.0(3)

O(7)#1Ba(1)O(3)#2 73.3(3) O(6)Ba(1)O(4)#3 71.5(3)

O(7)#1Ba(1)O(4)#3 72.0(3) O(3)#2Ba(1)O(4)#3 62.8(3)

O(6)Ba(1)O(12) 87.5(5) O(7)#1Ba(1)O(12) 105.5(4)

O(3)#2Ba(1)O(12) 35.4(4) O(4)#3Ba(1)O(12) 86.6(6)

O(4)#2Ba(1)O(5)#4 73.2(2) O(3)#5Ba(2)O(2)#3 140.1(3)

O(3)#5Ba(2)O(6)#2 103.4(3) O(2)#3Ba(2)O(6)#2 73.5(3)

O(3)#5Ba(2)O(5) 71.8(3) O(2)#3Ba(2)O(5) 71.8(3)

O(6)#2Ba(2)O(5) 63.2(3) O(3)#5Ba(2)O(11) 72.0(4)

O(2)#3Ba(2)O(11) 105.4(3) O(6)#2Ba(2)O(11) 33.7(3)

* Symmetry transformations used to generate equivalent atoms: #1 x, -y + 1/2, z — 1/2; #2 -

-y + 3/2, z - 1/2; #3 x, y, z

-z + 3/2 (for I); #l -x + 1/2, y, z - 1/2 (for II); # 1x - 1, y, z; #2 x:

-x + 2, y + 1/2, -z + 3/2; #3 -x + 1, y + 1/2, - 1; #4 x, -y + 3/2, z + 1/2; #5 x + 1, y, z - 1;

#6

x + 1, -y + 3/2, z - 3/2 (for III).

Table 3. Geometric parametes of hydrogen bonds of complexes I—III

Distance, A

D-H-A Symmetry codes

D-H H-A D -A D-H -A

O(1)- -H(L4;-O(3) 0.85 2.09 2.934(4) 173 -x + 1, y - 1/2, -z + 1/2

O(1)- -H(1£)-O(4) 0.85 2.03 2.879(5) 173 x, -y + 3/2, z + 1/2

II

O(5)- -H(5^)-O(2) 0.85 1.88 2.732(6) 176 -x + 1/2, y, z + 1/2

O(5)- -H(5£)-O(3) 0.85 1.90 2.751(5) 176 x + 1/2, -y + 1, z

O(6)- -H(6^)-O(2) 0.85 1.87 2.721(4) 174 x + 1/2, -y + 1, z

O(6)- H(6B)-O(4) 0.85 1.86 2.705(5) 174 x + 1/2, -y, Z

O(7)- -H(7^)-O(4) 0.85 1.88 2.724(5) 174 x + 1/2, -y + 1, z

O(7)- -H(7£)-O(6) 0.85 2.00 2.847(5) 174 -x + 1, -y + 1, z - 1/2

III

O(10)- -H(10A)-O(1) 0.85 2.11 2.894(19) 171 -x + 1, -y + 1, -Z + 1

O(10)- -H(10B)'O(9) 0.85 2.03 2.820(19) 171 x, y, Z + 1

O(11)- -H(11A)-O(7) 0.85 2.13 2.925(17) 172

O(11)- -H(11B)'O(5) 0.85 2.14 2.978(17) 171 x, -y + 3/2, Z - 1/2

O(12)- -H(12A)-O(3) 0.85 2.06 2.899(2) 174 x, -y + 3/2, z - 1/2

O(12)- -H(12B)-N(1) 0.85 2.08 2.912(4) 178 x, -y + 3/2, z - 1/2

under autogenous pressure in 120°C for 72 h, and then slowly cooled to room temperature at a rate of 5°C/h. Then red bulk crystals suitable for X-ray diffraction were separated and washed with water, which were stable in air and insoluble in water and common red solvents. The yield was 67% based on Fe.

For C28H36N4O2SFe4

anal. calcd., %: C, 30.57; H, 3.30; N, 5.09. Found, %: C, 30.54; H, 3.32; N, 5.06.

IR data (KBr; v, cm-1): 3460 m, 3197 m, 1657 m, 1618 s, 1585 s, 1461 s, 1381 v.s, 1272 s, 1233 s, 1155 s, 1105 v.s, 1064 s, 880 s, 824 m, 772 m, 708 s, 543 s.

Synthesis of complex III was similar to that of II except that BaCl2 (0.105 g, 0.5 mmol) was used instead of FeCl2 • 4H2O (0.1268 g

Для дальнейшего прочтения статьи необходимо приобрести полный текст. Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут. Стоимость одной статьи — 150 рублей.

Показать целиком