научная статья по теме ИЗОТЕРМИЧЕСКАЯ ДЕФОРМАЦИЯ ЖАРОПРОЧНЫХ СПЛАВОВ Металлургия

Текст научной статьи на тему «ИЗОТЕРМИЧЕСКАЯ ДЕФОРМАЦИЯ ЖАРОПРОЧНЫХ СПЛАВОВ»

ЦВЕТНАЯ МЕТАЛЛУРГИЯ

УДК 669.018.44:621.438

ИЗОТЕРМИЧЕСКАЯ ДЕФОРМАЦИЯ ЖАРОПРОЧНЫХ СПЛАВОВ

© Оспенникова Ольга Геннадиевна, канд. техн. наук; Ломберг Борис Самуилович, д-р техн. наук; Моисеев Николай Валентинович, ст. науч. сотр.; Капитаненко Денис Владимирович, начальник лаборатории

ФГУП «Всероссийский научно-исследовательский институт авиационных материалов». Россия, Москва. E-mail: omd@viam.ru

Статья поступила 11.06.2013 г.

Представлены результаты разработки и промышленного освоения технологических процессов с применением высокотемпературной изотермической штамповки дисков газотурбинных двигателей (ГТД) и других деталей из труднодеформируемых гетерофазных жаропрочных никелевых и титановых сплавов.

При освоении производства заготовок диска ГТД решена комплексная задача - разработаны термомеханические режимы деформации сплавов, обеспечивающих реализацию эффекта сверхпластичности, разработаны эффективные защитно-технологические покрытия, а также композиции высокожаропрочных штамповых материалов, обеспечивающих высокую стойкость при работе на воздухе, созданы энергосберегающие конструкции изотермических установок.

С применением разработанных технологий освоено производство высококачественных экономичных штамповок из высокожаропрочных труднодеформируемых сплавов, изготовление которых по традиционной технологии вызывает значительные трудности, а в ряде случаев невозможно.

Ключевые слова: жаропрочные сплавы; изотермическая штамповка; рекристаллизация; диски ГТД; специальные прессы.

Преимущества изотермического деформирования, осуществляемого в инструменте, нагретом до температуры деформации, в конечном счете, сводятся к повышению технологической пластичности труднодеформируемых композиций, повышению точности, а также расширению возможности управления структурой и свойствами штамповок.

Разработанные во ФГУП «ВИАМ» термомеханические параметры получения заготовок из труднодеформируемых жаропрочных никелевых сплавов с регламентированной мелкозернистой структурой основаны на процессах, связанных с предпочтительными механизмами пластической деформации и интенсивностью одновременно протекающих термически активируемых процессов разупрочнения [1].

Изотермическое деформирование, получившее распространение в нашей стране и за рубежом, отражает условия проведения процесса, 5 тогда как температура металла в процессе деформирования будет повышаться вследствие тепло-^ вого эффекта деформации. Поэтому в некоторых случаях оказывается целесообразным изначально £ задавать неодинаковые температурные градиен-< ты нагрева заготовки и штампа.

Большинство реальных процессов изотерми-

ческой штамповки осуществляется в условиях динамического разупрочнения. Известно, что в металле, подвергнутом пластической деформации, возрастает плотность дислокаций и происходит деформационное упрочнение, сопровождаемое повышением напряжения течения. При высокотемпературном изотермическом деформировании плотность дислокаций не достигает максимального значения в результате прохождения термически активируемых процессов динамического разупрочнения. Кроме того, напряжение, при котором устанавливается равновесие между деформационным упрочнением и динамическим разупрочнением, снижается с уменьшением скорости деформации при изотермической деформации. При постоянной температуре скорость деформации оказывает решающее влияние на интенсивность разупрочнения, которое реализуется в результате процессов динамического возврата (динамической полигонизации или динамической рекристаллизации). В отличие от рекристаллизации отжига признаком прошедшей динамической рекристаллизации является наличие следов деформации внутри равноосных зерен (вытянутые субзерна, повышенная плотность дислокаций). Такая субструктура в новых зернах, сформировавшихся в результате рекристаллиза-

ции на ранних стадиях деформации, создается в процессе их дальнейшей деформации.

Если время, за которое определенная часть объема металла (обычно порядка 50%) претерпевает рекристаллизацию (¿я), больше, чем время деформирования материала до какой-то заданной степени деформации (¿Д), то новые зерна, которые образуются по мере развития динамической рекристаллизации, будут упрочняться таким же образом, как нерекристаллизованная матрица. Следовательно, при высоких скоростях деформации (0,5-500 с-1) вклад динамической рекристаллизации в разупрочнение незначителен. Такой процесс изотермического деформирования окажется малоэффективным с точки зрения снижения напряжения течения. Вместе с тем применение высоких скоростей деформации в отдельных случаях может приводить к интенсификации процесса динамической рекристаллизации и создавать иллюзию снижения температуры ее начала. Это явление связано с повышением температуры металла в результате деформационного разогрева, интенсивность которого возрастает с увеличением скорости и степени деформации. При деформации с малыми скоростями, когда < ¿д, динамическая рекристаллизация вносит значительный вклад в разупрочнение. Изотермическое деформирование в условиях полного динамического разупрочнения позволяет осуществлять формоизменение заготовки при низких значениях напряжений течения и является высокоэффективным процессом [2].

Таким образом, изотермическое деформирование с малыми скоростями по сравнению с традиционными способами горячего деформирования создает условия для более полного протекания процессов динамического разупрочнения. Ответственными за разупрочнение в зависимости от термомеханических условий деформации (температуры, степени и скорости деформации), а также от свойств деформируемого материала, в частности от величины энергии дефектов упаковки, могут быть возврат, полигонизация и динамическая рекристаллизация. Основным процессом разупрочнения при высокотемпературном изотермическом деформировании с большими обжатиями является динамическая рекристаллизация. Деформирование при пониженных температурах может сопровождаться динамическим возвратом.

Преимущества изотермической штамповки при изготовлении точных заготовок деталей из алюминиевых и титановых сплавов сложной фор-

мы с необрабатываемой поверхностью или минимальными припусками на окончательную механическую обработку подтверждены многолетним опытом применения на ряде предприятий авиационной промышленности. Были освоены технологические процессы изотермической штамповки большой номенклатуры деталей сложной формы с тонкими конструктивными элементами (ребра, полотна), глубокими полостями, резким перепадом сечений, большим отношением площади поверхности к объему.

Широкое применение изотермической штамповки деталей из сталей и жаропрочных никелевых сплавов сдерживалось из-за отсутствия штамповых материалов, обеспечивающих достаточную стойкость при температурах выше 1000 °С. Имеющийся зарубежный опыт использования в качестве штампового материала молибденовых сплавов требует создания сложных изотермических установок с вакуумной камерой.

Вместе с тем актуальность применения изотермической штамповки жаропрочных сплавов обусловлена разработкой новых гетерофазных композиций, проявляющих низкую технологическую пластичность и имеющих очень узкий температурный интервал деформации, высокое сопротивление деформации, высокую чувствительность к скорости деформации и концентраторам напряжений при обработке по традиционной технологии. Сплавы нового поколения, применяемые для дисков ГТД, содержат более 30% основной упрочняющей у'-фазы, сохраняющей термостабильность при температурах, близких к температуре солидус. Трудности, возникшие при освоении производства деформированных заготовок дисков и других полуфабрикатов из таких сплавов, вызвали необходимость разработки более эффективной технологии изготовления [3-6].

Важным этапом в решении проблемы изотермической штамповки таких сплавов явилась разработка способов предварительной термодеформационной обработки слитков и заготовок, обеспечивающей формирование регламентированной мелкозернистой гетерофазной структуры с оптимальной морфологией упрочняющих фаз, которая проявляет высокую (до 70-80%) технологическую пластичность и сверхпластич- ^ ность при определенных температурно-скорост- 7 ных параметрах изотермической деформации ^ [7]. Разработка научно обоснованной технологии осуществляется с учетом критических тем- ^ ператур структурных и фазовых превращений: 5 растворения упрочняющих фаз, динамической и г

статической рекристаллизации. Для определения этих характеристик был разработан резистоме-трический метод, менее трудоемкий по сравнению с металлографическими. Не менее важным достижением в освоении высокотемпературной изотермической штамповки являлась разработка высокожаропрочных окалиностойких штампо-вых материалов, обладающих достаточно высокой стойкостью при температурах выше 1000 °С в воздушной среде.

Во ФГУП «ВИАМ» создан технологический комплекс изотермической штамповки для изготовления опытно-промышленных партий заготовок дисков серийных и перспективных ГТД из высокожаропрочных сплавов. В состав комплекса входят специальные гидравлические прессы усилием 630 и 1600 тс с регулируемой в широком диапазоне скоростью рабочего хода, программным управлением процессами нагрева и деформации (рис. 1).

Специализация прессового оборудования для изотермической штамповки достигнута в результате:

- размещения на столе пресса нагревательной установки, обеспечивающей контролируемый нагрев штампового инструмента до заданной температуры деформации заготовки;

- снижения и регулировки скорости рабочего хода пресса в пределах 0,1-4 мм/с;

- возможности выдержки деформируемой заготовки в штампе с приложением заданного усилия;

Рис. 1. Изотермический пресс усилием 1600 тс с системой мониторинга процесса деформации

- компьютерного контроля (мониторинга) процесса деформации [8].

Создание технологического комплекса обеспечивает реализацию технологического процесса при оптимальных температурно-скоростных параметрах деформации конкретного сплава [9].

Изотермическая установка позволяет поддерживать заданную температуру в пределах ±20 °С в диапазоне до 1150 °С, а регулированием скорос

Для дальнейшего прочтения статьи необходимо приобрести полный текст. Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут. Стоимость одной статьи — 150 рублей.

Показать целиком